Explanation in artificial intelligence. Insights from the social sciences

There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to provide more transparency to their algorithms. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for an explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a ‘good’ explanation. There exist vast and valuable bodies of research in philosophy, psychology, and cognitive science on how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations to the explanation process. This paper argues that the field of explainable artificial intelligence can build on this existing research and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which studies these topics. It draws out some important findings and discusses ways that these can be infused with work on explainable artificial intelligence.

Data and Resources
To access the resources you must log in
  • htmlHTML

    The resource: 'html' is not accessible as guest user. You must login to access it!
  • BibTeXBibTeX

    The resource: 'BibTeX' is not accessible as guest user. You must login to access it!
Additional Info
Field Value
Creator Miller, Tim,,
Group Social Impact of AI and explainable ML
Publisher Elsevier
Source Artificial Intelligence 267 (2019) 1-38
Thematic Cluster Other
system:type JournalArticle
Management Info
Field Value
Author Pozzi Giorgia
Maintainer Pozzi Giorgia
Version 1
Last Updated 8 September 2023, 18:25 (CEST)
Created 3 March 2021, 19:49 (CET)