-
Seeing without knowing. Limitations of transparency and its application to al...
Models for understanding and holding systems accountable have long rested upon ideals and logics of transparency. Being able to see a system is sometimes equated with being able... -
Toward Accountable Discrimination Aware Data Mining
"Big Data" and data-mined inferences are affecting more and more of our lives, and concerns about their possible discriminatory effects are growing. Methods for... -
Fair Transparent and Accountable Algorithmic Decision making Processes
The Premise, the Proposed Solutions, and the Open Challenges The combination of increased availability of large amounts of fine-grained human behavioral data and advances in... -
Algorithmic Decision Making Based on ML from Big Data. Can Transparency Resto...
Decision-making assisted by algorithms developed by machine learning is increasingly determining our lives. Unfortunately, full opacity about the process is the norm. Would... -
Algorithmic Decision Making Based on Machine Learning from Big Data
Decision-making assisted by algorithms developed by machine learning is increasingly determining our lives. Unfortunately, full opacity about the process is the norm. Would... -
Accountability for the Use of Algorithms in a Big Data Environment
Accountability is the ability to provide good reasons in order to explain and to justify actions, decisions, and policies for a (hypothetical) forum of persons or... -
Algorithmic Accountability and Public Reason
The ever-increasing application of algorithms to decision-making in a range of social contexts has prompted demands for algorithmic accountability. Accountable decision-makers... -
Measuring discrimination in algorithmic decision making
Society is increasingly relying on data-driven predictive models for automated decision making. This is not by design, but due to the nature and noisiness of observational...